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The energy losses in a dust-gas suspension due to heat transfer between
the gas and solid phases are found by the methods of the thermo-
dynamics of irreversible processes. An expression is obtained for the
energy losses in the approximation of the thermal relaxation time of
the particle.

In any thermodynamic process the energy losses
per unit time are given [1] by

E=TS. 1)

The rate of entropy production in a system of volume
V can be represented in the form [2]

5 ds
v
Let us consider a system consisting of a gas in
which solid particles are suspended., Regarding the par-
ticles as point sources of entropy distributed through
the system with density [3]
N

n@ = 8(r—r),
1

and assuming that collisions between particles do
not affect the net entropy production and that the
superposition principle is satisfied, we write the ex-
pression for the entropy production (per unit volume
of suspension)

N
GZ;Sja(r—fj). (3)

The rate of increase of entropy éj due to heat transfer
between the gas and the j-th particle [2] is equal to
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Here, by virtue of the superposition principle, the
integration is carried out over the entire volume
(V' = V) in the coordinate system tied to the j-th par-
ticle. Substituting (4) into (3), and then (3) into (2) and
(1), we obtain

N >
o @vT) 7 4
E=—T E S (r—r; v .
0 j=1 ;5 ¢ " VS’[ T ]idv v ®)

Using (5), we can calculate E for any given particle
distribution function n(r).

We consider a simple disperse system in which the
solid phase, in the form of spherical particles of iden-
tical size (Rj = R), is uniformly distributed over the
volume of the system. We assume that Bi — 0 and that
at any time the system consists of two equilibrium
subsystems: a gas at temperature Tg and particles
at temperature Tg. The gas-particle temperature
distribution has the form (Fig, 1)

_[Tsp<R,
Tg 0 >R.
For this distribution, given spherical symmetry,
the temperature gradient has the form
or
— =A{)6(p —R).
20 B8 —R) (6)

Integrating (6) with respect to p from 0to R + & (¢ > 0)
by virtue of the properties of the delta function [4] we
obtain for the normalization factor A(t)

A=AT@) =T, —T,

Then

ar .
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Using (7), we can easily evaluate the inner integral in
(5) in spherical coordinates (dV' = 4rp?dp):
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where q(R) = ¢AT according to Newton's law,
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Fig, 1. Temperature distribution in the gas
and in the particle,
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For a system of N identical spherical particles

0 3
o; 4R

N=yp Ve (9)

and, using (8) and (9), we obtain expression (5) in the
form

g

. a( AT‘)ZP& v
0s (10)

E=3Ty 5T

Integrating (10) with respect to time and setting pgVg =
= ], we find the energy losses referred to unit mass
of gas in an arbitrary thermodynamic process:

T

o AT \2
AE=3uT, H )dt. 1
"Ro, J 1 T, (11)

The quantity AE does not depend on the direction of
the heat flow,

Let us evaluate the integral in expression (11) for
processes whose duration exceeds the relaxation time
of the subsystem with the greater inertia., At p > 1
Tg < Ts. Hence, we assume that the gas changes tem-
perature instantaneously, while the particles relax to
the end state of the gas (Fig. 2):

(Ta =Ty <0,

T, = 12
¢ |\Tu+AT. t3>0. (12)

The quantity AT =Tg — Tg can be found from the par-
ticle heating (cooling) equation as Bi — 0

PoCR dTs _(r _T)=AT.

3a dt
Using (12), we obtain the solution of this equation for
AT in the form

|AT|=|ATglexp {—T‘—
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where 75 = pgegR/3a.
The integral in (11) is equal to
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0 is the relative change of gas temperature during the
process.

In integrating it was taken into account that AT <
« Tgy and, moreover, T > Tg, which permits 7 — o,
Hence, from (11) we obtain

AE= —; (L Toc, 6%

The value of 0 is determined by the nature of the ther-
modynamic process and can be found if the polytropic
index n, whose value depends on the concentration pu,
the heat-transfer coefficient «, the thermophysi-
cal parameters of the gas and the particles, and the
rate of the process [5], is known. The energy losses,
calculated from (13), for the externally adiabatic
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Fig, 2, Variation of gas and particle temperatures
with time,
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Fig, 3. Energy losses (kJ/kg) in

a suspension (¢ =p,/p; is the

compression ratio): 1) u =4.5;
2) u =10.9,

compression of an air-graphite suspension are pre-
sented in Fig, 3. The value of 6 was calculated from
the equation of the polytropic process for two values
of the polytropic index,n; = 1,072 and n, = 1.067, ob-
tained experimentally [5] at concentrations p; =4.5
and uy = 10,9, respectively, The temperature and
specific heat were taken equal to Ty = 300° K, cg =1
kd/kg - deg.

NOTATION

E are the energy losses per unit ti.me; Ty is the
temperature of surrounding medium; S is the rate of
increase of entropy; V is the volume of the thermo-
dynamic system; o is the entropy production; n(r) is
the particle distribution function; g is the heat flux
density; v 7 is the temperature gradient; R is the particle
radius; p isthe variable radial' coordinate in system
tied to particle; Tg is the gas temperature; Tg is the
particle temperature; « is the heat-transfer coeffi-
cient; N is the number of particles; u is the mass
concentration; pg is the density of the particle mate-
rial; pg is the gas density; Vg is the volume occupied
by the gas; ATg is the change of the gas temperature
during the process; Tg; is the initial gas temperature;
Bi is the Biot number; t isthe time; 6(r — rj), 6(p — R)
is the Dirac delta function; rj is the particle radius
vector; Tg isthe gas relaxation time; Tg is the particle
relaxation time; 7 is the process time,
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